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The 10x Genomics Visium technology

⇓

• j = 1, . . . , p spots, each of
which is spatially located;

• Number of spots ≈ number
of cells;

• for each spot, i = 1, . . . , n
gene expressions are
available.
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Spatially expressed genes and research motivations

• The rise of such advanced technology has increased the
interest for the so-called spatially expressed (s.e.) genes.

• There are methods for discovering s.e. genes: spatialDE
[Svensson et al., 2018], Trendsceek [Edsgärd et al., 2018],
SPARK [Sun et al., 2020].

however...

• These methods do not account for the presence of different
cell types.

• Some (clusters of) genes might be s.e. just in some specific
cell types.
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Some aspects to consider

• Let

X
n×p

: xij = measure of expression of the i-th gene
in the j-th spot.

• The spatial coordinates of the spots (s1, . . . , sp) are known.
• Just for now, we assume there is only one type of cells.

Some aspects to consider:

1. correlation of the genes → Cor(xij , xi′j),
2. (spatial) correlation of the spots → Cor(xij , xij′).
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A statistical model

We assume that the experiment matrix X distributes as

X ∼MVN n,p(µ,Σ,∆),

whereMVN denotes the Matrix Variate Normal distribution
[Gupta and Nagar, 2018]:

• µ = µ · 1n×p is the mean matrix;
• Σ is an n× n matrix which express the correlation of the
genes (rows);

• ∆ is an p× p matrix which express the correlation of the
cells (columns).
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A statistical model

Regarding the rows,

Σ :=
{
σ2

i in position (i, i);
0 elsewhere;

σ2
i ∼ IG(α, β).

Regarding the columns,

∆ = τ ·K(φ) + ξ · 1p×p.

• τ ∈ R+ is the amount of spatial expression;

• K(·) is the spatial kernel matrix: example,

Kj,j′ = exp{−||sj − sj′ ||2/(2φ2)};

• φ ∈ R+ is the spatial scale;

• ξ ∈ R+ is the nugget effect (variance not imputable to the spatial
structure);
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The Co-clustering problem

• K gene clusters → Ci = k means that gene i belongs to the k-th gene
cluster;

• R cell clusters → Dj = r means that cell j belongs to the r-th cell type.

r = 1 r = 2 . . . r = R

k = 1 X11 X12 . . . X1R

X =
k = 2 X21

. . . . . .
...

. . .
... . . .

. . .
...

k = K XK1 . . . . . . XKR

⇓

Xkr ∼MVNnk,pr
(µkr,Σkr, τkr ·K(φr) + ξkr · 1pr×pr

),

σ2
kr,i ∼ IG(αkr, βkr)

for k = 1, . . . ,K and r = 1, . . . , R.
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spatialLIBD data

• We exploit the human dorsolateral prefrontal cortex (DLPFC)
spatial transcriptomics data generated with the 10x Genomics
Visium technology by [Maynard et al., 2020] and contained in
the R package spatialLIBD [Collado-Torres et al., 2020].

• We reduced the dataset size, using the first 1000 most
variable genes measured in 1585 spots.

• We run our model on log-counts data using K = 1 and R = 4.
• The estimation procedure is initialized using the results from

k-means.
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spatialLIBD data - clustering
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Figure 1: Data: subject 151673. Left: clustering provided by spatialLIBD. Right:
Clustering from our method.

cell cluster µ̂ τ̂/ξ̂ φ̂

1 0.863 0.479 19.159
2 0.451 0.304 21.232
3 0.501 0.357 19.283
4 0.198 0.200 31.440
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spatialLIBD data - genes variance
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Figure 2: Expected value and 95% interval of σ2
i in every cell cluster, given the

data the parameter estimates. The first two highly variable genes are
ENSG00000123560 and ENSG00000197971.
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