Bioconductor On The Cloud

EuroBioc2020 December 14th, 2020 Sehyun Oh, PhD

Sehyun.Oh@sph.cuny.edu https://github.com/shbrief

Why Genomics in the Cloud?

COMPUTATIONAL TOOLS

Cloud computing for genomic data analysis and collaboration

Ben Langmead¹ and Abhinav Nellore²

Abstract | Ne on large sequ data have be use large-sca computers a research. Her

... its elasticity, reproducibility, and privacy features make it ideally suited ...

tudies based juencing earchers to ent n genomics and

large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make it ideally suited for the large-scale reanalysis of publicly available archived data, including privacy-protected data.

Doubling every 18 months...

30TB

Approximate amount of public sequence data received and processed *daily* by the NCBI Sequence Read Archive (SRA).

Amount of storage necessary for a *single* whole genome (40x coverage), requiring about 11 minutes of data transfer on a dedicated 1Gb/second network.

Table 1 | Large genomics projects and resources

Name	Website	Description
1000 Genomes Project (1KGP) ¹⁰²	www.internationalgenome. org	This project includes whole-genome and exome sequencing data from 2,504 individuals across 26 populations
Cancer Cell Line Encyclopedia (CCLE) ¹¹⁵	portals.broadinstitute.org/ ccle	This resource includes data spanning 1,457 cancer cell lines
Encyclopedia of DNA Elements (ENCODE) ³³	www.encodeproject.org	The goal of this project is to identify functional elements of the human genome using a gamut of sequencing assays across cell lines and tissues
Genome Aggregation Database (gnomAD) ¹³	gnomad.broadinstitute.org	This resource entails coverage and allele frequency information from over 120,000 exomes and 15,000 whole genomes
Genotype–Tissue Expression (GTEx) Portal ^{15,16}	gtexportal.org	This effort has to date performed RNA sequencing or genotyping of 714 individuals across 53 tissues
Global Alliance for Genomics and Health (GA4GH) ⁹²	genomicsandhealth.org	This consortium of over 400 institutions aims to standardize secure sharing of genomic and clinical data
International Cancer Genome Consortium (ICGC) ¹⁴	icgc.org	This consortium spans 76 projects, including TCGA
Million Veterans Program (MVP) ¹⁹	www.research.va.gov/mvp	This US programme aims to collect blood samples and health information from 1 million military veterans
Model Organism Encyclopedia of DNA Elements (modENCODE) ^{25,85}	www.modencode.org	The goal of this effort is to identify functional elements of the Drosophila melanogaster and Caenorhabditis elegans genomes using a gamut of sequencing assays
Precision Medicine Initiative (PMI) ¹⁸	allofus.nih.gov	This US programme aims to collect genetic data from over 1 million individuals
The Cancer Genome Atlas (TCGA) ¹¹⁶	cancergenome.nih.gov	This resource includes data from 11,350 individuals spanning 33 cancer types
Trans-Omics for Precision Medicine (TOPMed) ¹⁷	https://www.nhlbiwgs.org	The goal of this programme is to build a commons with omics data and associated clinical outcomes data across populations for research on heart, lung, blood and sleep disorders

Cloud computing advantages

- Scalability for both storage/data and compute resources
- Share and collaborate securely
- Reproducibility comes with shared infrastructure and code
- Reusability
- Democratize data access and, potentially, analysis

Cloud-based genomics platforms

Cloud-based genomics platform is one of the promising solutions for rapidly growing size of sequencing data and many platforms already exist hosting different dataset and analysis tools. Below is the brief example of a few:

Platform	Hosted Data	Analysis Tools
Terra	CCDG, eMERGE, TCGA, TARGET, TOPMed, etc.	WDL, Notebook, RStudio, Galaxy
Seven Bridges	TOPMed	CWL, Notebook, RStudio
Seven Bridges	TCGA, TARGET, ICGC, <i>etc</i> .	CWL, Notebook, RStudio
ISB-CGC	TCGA, TARGET, <i>etc</i> .	GCP tools (e.g. Google BigQuery)

Contents

- 1. Overview of Terra platform
- 2. Setup 'classroom' in Terra (for teaching)
- 3. Bioinformatics analysis on Terra UI (for wet-lab scientists)
- 4. Share your published work through Terra (for bioinformaticians)
- 5. Workflow package powered by Terra (for developers)

What is Terra?

- Problems of the traditional model of genomic data sharing, which is centralized data warehouse such as dbGap from which researchers download data to analyze locally :
 - transfer/download cost
 - long transfer time
 - redundant compute infrastructure
 - security of protected data
- NHGRI's AnVIL provides a unified environment for data management and compute.
 - no need for data movement
 - better security handling
 - provide elastic, shared computing resources

Terra

- Provides a compute environment with secure data and analysis sharing capabilities
- Provide interactive analysis interfaces such as Jupyter, RStudio, and Galaxy
- **On-demand computational capacity** sourced from Google Cloud Platform
- Workspace is the main building block of Terra

Data

- Data model management and cohort generation by Gen3
- Features :
 - Easy authentication
 - No storage and transfer costs for the data hosted by Terra

Currently available datasets in AnVIL/Terra

14

Workflows

- Currently, WDL (*W*orkflow *D*escription *L*anguage) is the only workflow language supported by Terra. (Cromwell, the execution engine, can takes WDL and CWL (*C*ommon *W*orkflow *L*anguage))
- Dockstore : a large collection of pre-built WDL workflows

WDL

```
version 1.0
task hello {
  input {
    String name
  }
  command {
    echo 'hello ${name}!'
  output {
    File response = stdout()
  runtime {
   docker: 'ubuntu:latest'
}
workflow test {
  call hello
}
```

- Top-level components: workflow, task, and call
- Core task-level components: command and output
- Default runtime attributes (<u>here</u>):

```
runtime {
    "docker": "ubuntu:latest",
    "cpu": 1,
    "memory": "2G",
    "preemptible": 0
}
```

• Additional runtime attributes can be found <u>here</u>.

Docker Container

A container encapsulates all the software dependencies associated with running a program

Benefits:

Portability, Reusability, and Reproducibility

17

Repositories:

Docker Hub, Dockstore, GCR (Google Container Registry)

Setup 'classroom' in Terra

(For teaching)

Hassle-free setup

• Terra workspace allows a setup of a lecture or lab in advance of sharing it, where everyone uses the same runtime environment - no setup or compatibility issues.

Create a group to share workspace / billing

		COVID-19 Data & Tools	Notebook Runtime	individual and/or group	
🥵 Sehyun Oh 🗸 NOTEE	BOOKS WORKFLOWS JOB HISTORY		:	Share Workspace	
*** Your Workspaces		WORKSPAC	E INFORMATION	User email	
		CREATION DATE 11/12/2019	LAST UPDATED 11/12/2019	Add people or groups	
🛍 Library 🗸 🗸		SUBMISSIONS O	Access Level Owner	Current Collaborators	
		EST. S/HONTH \$0.00		bshifaw@broadinstitute.org	
		OWNERS	- I	Notebook Runtime 🔅 Can share 😪 Can compute	×
		shbrief@gmai lwaldron.rese	il.com arch@gmail.com	shbrief@gmail.com	
Sehyun Oh 🔷		TAGS ()		Owner ✓ Can share Can compute	
Profile		Add a tag			_
Groups		No tags yet		Clone CANCEL	SAVE
Billing		Google Buck fc-d43953c9-	ket 3da7-4bb8-8484-4	Share	
Notebook Runtimes			4	Publish COMING SOON	
Sign Out				Delete Workspace	
Your Workspaces			ć	wner	

Share a workspace with

For teaching

Flexible runtime environment

• Creating runtime is very intuitive with the cost/hr information.

		1
efault		Ļ
loud environment		
oud environments consist ersistent disk	of an application configura	ation, cloud compute and a
Use default environme	ent	CREA
 Default: (GATK 4.1.4.1, F What's installed on this 		
	4 CPUs, 15 GB memory, a your data even after you de	
Learn more about Persi mounted	stent disks and where you	r disk is
Running cloud compute cost	Paused cloud compute cost	Persistent disk cost \$2.00 per month

Custom Environment

Default: (GATK 4.1.4.1, Python 3.7.9, R 4.0.3)	~
What's installed on this environment?	Updated: Nov 16, 2020 Version: 1.0.11
Cloud compute profile CPUs 4 V Memory (GB) 15 V	•
URI	
Compute type	
Standard VM 🗸	
Persistent disk size (GB)	
Stores your analysis data. Learn more about Persiste mounted 50	ent disks and where your disk is
	CREATE

e.g. select RStudio

RStudio (R 4.0.3, Bioconductor 3.12.0, Python 3.8.5)	~
Legacy Python/R (default prior to January 14, 2020)	
Legacy GATK (default prior to June 1, 2020) (GATK 4.1.4.1, Pyth	ion 3.7.7, R 3.6.3)
Legacy R / Bioconductor (R 3.6.3, Bioconductor 3.10, Python 3.	.7.7)
COMMUNITY-MAINTAINED JUPYTER ENVIRONMENTS (VERIFI	ED PARTNERS)
Pegasus (Pegasuspy 1.0, Python 3.7, scPlot 0.0.16, harmony-py	/torch 0.1.3)
COMMUNITY-MAINTAINED RSTUDIO ENVIRONMENTS (VERIFI	ED PARTNERS)
RStudio (R 4.0.3, Bioconductor 3.12.0, Python 3.8.5)	
OTHER ENVIRONMENTS	
Custom Environment	

For teaching

Costs for GCP resources

Hourly cost for custom environments

Virtual CPUs	Memory	Price (USD)
1	3.75GB	\$0.04749975
2	7.5GB	\$0.0949995
4	15GB	\$0.189999
8	30GB	\$0.379998
16	60GB	\$0.759996
32	120GB	\$1.519992
64	240GB	\$3.039984

Persistent disk pricing

\$0.040 per GB / month in USD (e.g. 50GB persistent disk costs \$2.00 per month.)

Cost-saving strategies

- Auto-shutdown (for notebooks)
- Use call caching (for workflows)
- Delete intermediate outputs (for workflows)

Summary

- Positives:
 - No setup or compatibility issues
 - Each student selects a compute environment with known cost per hour : each student can select what they need
 - Terra's auto-suspension of notebook runtimes helped keep costs low
 - Students only have to login, don't have to set up billing
- Negatives:
 - Each student selects a compute environment with known cost per hour: No way to identify an over-spending student or to limit what runtime they must use
 - No cost breakdown per student
- Notes:
 - Billing is post-pay (you can find out how much has been spent with ~24h delay)

Bioinformatics analysis on Terra UI

(For wet-lab scientists)

RNA sequencing analysis

• Terra workspace : <u>Bioconductor-Workflow-DESeq2</u>

Workflow

for fastq \rightarrow count matrix using salmon

	NOTEBOOKS	WORKFLOWS	JOB HISTORY		(
Back to list AnVILBUIKRNASeq Version: master Source github.com/Kayla-Morrel Synopsis: No documentation provided Run workflow with inputs def Sep 1 Select root entity type: mast	ned by file paths	ole Step 2	CT DATA No participant_sets selected		
Use call caching Delete	intermediate ou	tputs OUTPUTS	RUN ANALYSIS		
Use call caching Delete				g or click to upload jgor as SEARCH INPUTS	_
Use call caching Delete				g or click to upload jgop a search INPUTS Attribute	
Use call caching Delete	IPUTS **	OUTPUTS .	Download json Dra	Attribute	{}
Use call caching Delete SCRIPT == IN Task name	IPUTS **	OUTPUTS • Variable	Download json Dra	Attribute this.participants.fastq_1	{}
Use call caching Delete SCRIPT == IN Task name salmon	IPUTS **	OUTPUTS • Variable fastqs_1	Download json Dra Type Array[File]	Attribute this participants fastq_1 this participants fastq_2	

Notebook for interactive analysis

Introduction

This vignette will walk you through how to run a full DBSeq2 analysis on the output data from the AnVILBulkRNASeg workflow. The output data should have been retrieved in the previous vignette <u>Managing the Workflow Cutout</u>.

Installation

How to install the AnVILBulkRNASeq package is shown in the first vignette An Overview of AnVILBulkRNASeq. Refer to that vignette for installation steps. The following command will load the package.

In []: library(AnVILBulkRNASeq)

Again, we will need functionality from AnVIL , as well as other packages so we will install and load them now.

```
In [ ]: pkgs = c("bloconductor/ANVLL', "GenomicFeatures", "tximport", "DESeq2")
BlocManager::Initall(pkgs)
suppressPackageStartupMessages({
    library(AnVLL)
    library(AnomicFeatures)
```

```
library(tximport)
```

library(DESeq2)

Creating the DESeq2 dataset

The files that are needed for the DESeq2 analysis are the guant.sf files for each sample. We create the path to those files (for each sample) and save them to files.

In []: files_path <- paste0(getwd(), "/DRR0161%s_1/quant.sf")
files <- sprintf(files_path, 25:40)</pre>

A bdb object is needed for the analysis so we download the GTF file associated with Arabidopis thaliana and run makeTxDbFromGFF() on the downloaded file.

24

For wet-lab scientists

In []: download.file("ftp://ftp.ensemblgenomes.org/pub/plants/release-28/gtf/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR1
0.28.gtf.gz",

Available workspaces under Showcase

DATASETS SHOWCASE & TUTORIALS CO	DE & WORKFLOWS	
New and interesting	Featured workspaces	GATK4 example workspaces
COVID-19_Broad_Viral_NGS	Introduction-to-TCGA-Dataset	Germline-CNVs-GATK4
Massachusetts has been severely impacted by the COVID-19 pandemic, with 115,850 cases and 8,690 deaths as	Practice accessing and analysing controlled-access TCGA data with	### GATK Best Practices for Germline Copy Number Variation gatk
of August 22, 2020. Seventy percent of the state's 6.9 M population lives in the	example analysis Tools. Data processing Tools allow you use the TCGA data to create a panel of normal VCF (1-	An analysis to detect germline copy number variants in exome sequence
ml4h-toolkit-for-machine-learning- on-clinical-data	DNA-methylation-preprocessing	Variant-Functional-Annotation- With-Funcotator
# Use ml4h to review and annotate clinical data and machine learning results	### DNA-methylation-preprocessing Suite of tools to conduct methylation	### GATK Best Practices for Funcotator **Funcotator**(FUNCtional annOTATOR) analyzes variants for their function and
In this Terra workspace we demonstrate	data analysis. Methods from this workspace can be used for alignment	writes the analysis to a specified output file.
Metis-toolkit-for-vaccine-trial-	Bioconductor	Variant_Calling_Spark_Multicore
Metis, named after the Greek goddess of wisdom, is a decision support tool built for vaccine trial planners, especially for	Explore common Bioconductor packages that can be used to perform bulk RNA differential expression analyses	### GATK Best Practices for Variant Calling with Spark on a Multicore Machine gatk
when models of future disease prevalence are unreliable. Metis is being	or manipulate single-cell RNA-seq data	This workspace highlights a pipeline for
COVID-19_cross_tissue_analysis	Waddington-OT	GATK4-Germline-Preprocessing-

Available workspaces under Workspaces

1

?

쓮

COVID-19 Data & Tools

iyun Oh	~	WORKSPACES (+) Tags V Access levels	✓ Billing	g project 🗸	Submission status	
<spaces< th=""><th></th><th>MY WORKSPACES (1) NEW AND INTERESTING (0) FEATURED</th><th>(1) PUBLIC (3)</th><th>Created By</th><th>Access Level</th><th></th></spaces<>		MY WORKSPACES (1) NEW AND INTERESTING (0) FEATURED	(1) PUBLIC (3)	Created By	Access Level	
у	~	InferCNV_SCP_scRNA-seq ## inferCNV	Jan 6, 2020	bshifaw@broadinstitute.org	Reader	() ()
		PrimateRetinalCellAtlas-RegevSanes-Retina-BroadInstit Human retinal cells from 1 subject (approximately 4000 cells) pro	Feb 20, 2019	nsharif@broadinstitute.org	Reader	()
ort	~	scRNA-seq-cloud ## Single-Cell / Single-Nucleus RNA-seq (Sc/SnRNA-seq) toolkit wi	May 12, 2020	bshifaw@broadinstitute.org	Reader	()

Summary

- Minimum coding thanks to the GUI and pre-implemented workflows and notebooks
- Available workspaces:
 - RNA sequencing analysis
 - Single cell analysis
 - genesis-GWAS
 - GATK best practices from Broad Institute
- Access Google Cloud resources
- [Note] Your data should be stored in Google cloud storage. And if you want to use Terra's data model, you need to create and upload the table of your data stored in Google cloud storage.

Share your published work through Terra

(For bioinformaticians)

CNV analysis

- Reliable analysis of clinical tumor-only whole-exome sequencing data (Oh et al., JCO Clin Cancer Inform, 2020)
- Terra workspace : <u>Tumor_Only_CNV</u>

Dashboard

• Contains information on the workspace

For bioinformaticians

Data

- Paper used TCGA controlled data (BAM files) → Synthetic dataset for public workspace
- Pre-populated public reference files (provided by Terra) → available under 'Reference Data'
- Researcher's own data (e.g. BED file in Google bucket) → linked under 'Workspace Data'

	CES	Workspaces > wald Data		umor_Only_CNV > 🗱 COVID-19 Data & Too	Is Cloud Environment STOPPED (<\$0.01 hr)
DASHBOARD DATA	NOTEB	OOKS WORKFLO	WS JOB H	IISTORY	(i)
TABLES 😯		WNLOAD ALL ROWS	📋 сору	PAGE TO CLIPBOARD 0 rows	selected Search Q
🔳 participant (100)		participant_id 🖡	role	synthExomeBam	synthExomeBamIndex
participant_set (2)		HG00096	neutral	HG00096.synthetic.exome.bam	HG00096.synthetic.exome.bai
REFERENCE DATA		HG00097	neutral	HG00097.synthetic.exome.bam	HG00097.synthetic.exome.bai
🗉 b37Human 🕒		HG00128	neutral	HG00128.synthetic.exome.bam	HG00128.synthetic.exome.bai
OTHER DATA		HG00131	neutral	HG00131.synthetic.exome.bam	HG00131.synthetic.exome.bai
Workspace Data		HG00142	neutral	HG00142.synthetic.exome.bam	HG00142.synthetic.exome.bai
C Files		HG00143	neutral	HG00143.synthetic.exome.bam	HG00143.synthetic.exome.bai

Notebooks

- 5 Jupyter notebooks written in $R \rightarrow 4$ for data pre-processing and 1 for downstream analysis
- AnVIL package enables a direct connection between 'Data' and 'Notebooks'

NOTEBOOKS	NOTEBOOKS WORKFLOWS JOB HISTORY SEARCH NOTEBOOKS Sort By: Alphabetical ① 1_Annotate_Manifest	Last edited: Jun 9, 2020
Create a New Notebook		
New Notebook	1_Annotate_Manifest	Last edited: Jun 9, 2020
and the second se		
0	② 2_Build_Data_Table	Last edited: Jun 9, 2020
Drag or Click to	3_Format_BED	Last edited: May 21, 2020
Add an ipynb File	4_Download_SNP_Blacklist	Last edited: May 21, 2020
	5_Downstream_Analysis	Last edited: May 21, 2020

For bioinformaticians

20

Workflows

- Pipeline was implemented into 7 WDL workflows in Terra, based on their modularity and input/output requirements.
- These workflows incorporate many different runtime environments (e.g. GATK, MuTect, Bioconductor, etc.)

	Workspaces > waldronlab-terra/Turmor_Only_CNV > Workflows	
ASHBOARD DATA NOTEI	JOB HISTORY	(:)
WORKFLOWS	SEARCH WORKFLOWS Sort By: Alphabetical	·
Find a Workflow	() 1_MuTect1_PON	V. master Source: dockstore
	1_MuTect1_Variants_Calling	V. master Source: dockstore
	1_PureCN_IntervalFile	V. 1 Source: Terra
	2_PureCN_Coverage	V. master Source: dockstore
	3_PureCN_normalDB	V. master Source: dockstore
	4_PureCN_PureCN	V. SynthData Source: dockstore
	⑤ 5_PureCN_Dx	V. SynthData Source: dockstore

Summary

- The major benefits of having Terra workspace for research papers are :
 - 1. Data storage, compute-intensive pipeline, and downstream analyses are all available in one place
 - 2. Improved the reproducibility
 - 3. Sharing code and providing additional information not included in the paper are available through the workspace
- One potential downside is that for a complicating pipeline, like CNV analysis, writing WDL and managing data model can be non-trivial.

Workflow package powered by Terra

(For Developers)

API (Application Programming Interface)

(Slide credit to Sean Davis)

AnVIL package

For the end-users, AnVIL provides fast binary package installation, utilities for working with Terra / AnVIL table and data resources, and convenient functions for file movement to and from Google cloud storage.

Using gcloud_*() for account management

> gcloud_account() # authentication account
[1] "shbrief@gmail.com"
> gcloud_project() # billing project information
[1] "bioinfo"

Using gsutil_*() for file and bucket management

27

AnVIL package

For the developers, AnVIL provides programmatic access to the Terra, Leonardo, Dockstore, and Gen3 RESTful programming interface, including helper functions to transform JSON responses to the formats more amenable to manipulation in R.

```
## Create an instance of service
> terra <- Terra()</p>
> ## Invoke endpoints
> terra$status()
Response [https://api.firecloud.org/status]
 Date: 2020-12-13 00:12
 Status: 200
 Content-Type: application/json
 Size: 245 B
> ## Process responses
> status <- terra$status()</pre>
 class(status) # defined in the httr package
[1] "response"
```

'Runnable' workflow package

For developers

Microbiome analysis

- <u>bioBakery</u> workflows is a collection of workflows and tasks for executing common microbial community analyses using standardized, validated tools and parameters.
- Potential blockers for using bioBakery
 - Limited compute and storage resources
 - Unfamiliarity of Python
 - Non-trivial setup process
- Terra workspace : <u>mtx_workflow_biobakery_version3</u>
 - Whole metagenome shotgun
 - Requirements: Python v2.7+, AnADAMA, KneadData, MetaPhIAn, HUMAnN
 - Tasks: quality control, taxonomic and functional profiling

DIY workflow

biobakeR package

0. Prerequisite

<u>Set up Terra account</u> : you get the required inputs, **accountEmail** and **billingProjectName**, for biobakeR. Place your data in Google Cloud Bucket

1. Input

cloneWorkspace(): copies the template workspace containing the bioBakery workflow.
updateInput() : takes user's inputs.

2. Run workflow

launchWorkflow() : launches the bioBakery workflow in Terra.

3. Result

monitorSubmission() : allows you to monitor the status of your workflow run.
listOutput() : displays the list of your workflow outputs.
getOutput() : allows you to download your outputs.

Clone workspace	<pre>> cloneWorkspace(accountEmail, billingProjectName, workspaceName = "test") [1] "Workspace is successfully cloned"</pre>
Launch workflow	<pre>> launchWorkflow(accountEmail, billingProjectName, workspaceName) [1] "Workflow is succesfully launched." > submissions <- monitorSubmission(accountEmail, billingProjectName, workspaceName) > submissions # A tibble: 57 × 6 submissionId submitter submissionDate status</pre>
	<chr> <chr> <chr> <chr> <chr> <chr> 0c915297-f8c2-4a29-b642-39a7c9e7974b shbrief@gmail.com 2020-12-13 02:17:56 Submit 2 80b04b78-22f4-42af-842a 0a0f7a60ca9a cbbriaf@amail com 2020-12-13 02:17:12 Submit</chr></chr></chr></chr></chr></chr>
List outputs	<pre>> listOutput(accountEmail, billingProjectName, workspaceName, submission_id, + keyword = "HSM7J4NY.*.tsv") # A tibble: 9 x 4</pre>
	<pre>file workflow task path</pre>
Download outputs	<pre>> HSM7J4NY_dir <- "~/data2/biobakeR/inst/extdata/outputs/HSM7J4NY" > getOutput(accountEmail, billingProjectName, workspaceName, submission_id, + keyword = "HSM7J4NY.*.tsv", dest_dir = HSM7J4NY_dir) Copying gs://fc-071d1d53-e186-44ad-8951-d85538f85502/87adddce-5f43-40b0-a5a1-f7a 4-848f-bbbe6f46de64/call-FunctionalProfile/shard-0/cacheCopy/HSM7J4NY_genefamili Copying qs://fc-071d1d53-e186-44ad-8951-d85538f85502/87adddce-5f43-40b0-a5a1-f7a</pre>

- With biobakeR package, users can run python tools using Google Cloud resources from R session on their own laptop
- Runnable workflow packages can minimize the overhead for R users
 → Users don't need to setup computing environment nor need to learn WDL,
 Terra, and GCP to run Terra-implemented workflows

Conclusions

1. Terra offers an easy way to share bioinformatics work with the identical runtime environment, facilitating collaboration and teaching.

2. Terra workspaces and workflows enable complicating bioinformatics analyses with minimum coding.

3. You can increase the reproducibility of your work by sharing it through Terra, where you can host data, workflow, and downstream analysis all together.

4. Workflow package powered by Terra allows users to utilize Google cloud resources and even non-R tools from R session on their own laptop in a familar way

Acknowledgements

Waldron's lab

- Levi Waldron
- Marcel Ramos

Bioconductor-AnVIL team

- Martin Morgan
- Vince Carey
- Nitesh Turaga
- Lori Shepherd
- BJ Stubbs
- Kayla Interdonato

Funding

NHGRI supports AnVIL through cooperative agreement awards to the Broad Institute (#5U24HG010262) and Johns Hopkins University (#5U24HG010263).

Links

- Gen3 : <u>https://gen3.org/</u>
- Dockstore : <u>https://dockstore.org/</u>
- Default WDL runtime attributes : <u>https://support.terra.bio/hc/en-us/articles/360046944671-Default-runtime-attributes-for-workflow-s</u> <u>ubmissions</u>
- RNA Sequencing Analysis Workspace (contact me to access):
 https://opp.term.big/ffuersess//big.conductor.mei.apuil/Disconductor.W/
 - https://app.terra.bio/#workspaces/bioconductor-rpci-anvil/Bioconductor-Workflow-DESeq2
- Tumor_Only_CNV workspace : <u>https://app.terra.bio/#workspaces/waldronlab-terra/Tumor_Only_CNV</u>
- bioBakery : <u>https://huttenhower.sph.harvard.edu/biobakery_workflows/</u>
- bioBakery workspace (contact me to access): <u>https://app.terra.bio/#workspaces/rjxmicrobiome/mtx_workflow_biobakery_version3</u>
- Set up Terra account :

https://support.terra.bio/hc/en-us/articles/360034677651-Account-setup-and-exploring-Terra

- BioC2020 Workshop on AnVIL/Terra : <u>http://waldronlab.io/AnVILWorkshop/</u>
- BioC-AnVIL Slack Channel : <u>https://join.slack.com/share/zt-k04vu3kl-mtu6MlitdX8VB7Bx1k~FLg</u>
- BioC-AnVIL project website : <u>https://bioconductor.github.io/AnVIL_Admin/</u>
- biobakeR : <u>https://github.com/shbrief/biobakeR</u>
- Get \$300 Google credits : <u>https://support.terra.bio/hc/en-us/articles/360046295092</u>
- Contact for an inquiry on BioC-AnVIL credit : Sehyun.Oh@sph.cuny.edu
- Reference book : <u>https://www.amazon.com/Genomics-Cloud-GATK-Spark-Docker/dp/1491975199</u>