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A convergence of interests

• Biology has become a data intensive science, making urgent
the development of innovative and transformative tools
contributing to the understanding of complex patterns in
high-dimensional contexts.

• Statistics is an inherently collaborative discipline, developing in
response to scientific needs.

• To enable mutual exchange of conceptual understanding, the
use of a “common language” is essential.
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The need for a common language

• A biologist understands gene transcription by identifying
specific transcription factors, their binding sites, the role of
RNA polymerase and the genes that get activated.

• For a statistician, these crucial facets are extraneous details.
What matters are the probability distributions associated with
the involved quantities and quantification of the forces involved
in the processes.
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Graphs: the connecting language
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A promising route

As pathways are the best representation of biological
experimentally validated knowledge of a specific process;

we make use of the topology of the pathway within the theory of
graphical modelling. According to the research goal, we use
directed acyclic graphs (DAGs), gaussian graphical models
(GGMs), mixed graphs (ongoing).

(Note that a plurality of statistical methods are based on the use of
pathways as simple lists of genes, but do not make use of the
relations among them).
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Outline

• Essentials on graphical models
• Connecting biology to statistics
• Aswering biological questions: doing and seeing
• And beyond
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Essentials on graphical models



Conditional independence

Random variables X1 and X3 are conditionally independent given
the random variable X2, usually written X1 ⊥⊥ X3|X2, if

L(X1|X2,X3) = L(X1|X2)

Intuitively: knowing X2 renders X3 irrelevant for
explaining/predicting X1.

Conditional independence allows to factorize the joint distribution of
the variables into smaller, more tractable, units

X1 ⊥⊥ X3|X2 −→ p(x1, x2, x3) = ψ1(x1, x2) ψ2(x2, x3)
= p(x1, x2) p(x3|x2)
= p(x1|x2) p(x2, x3)
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Graphical representation

Each node, v say, is associated to random variable Xv .

Edges represent connections between vertices

• undirected
• directed
• bidirected (not covered here)
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Undirected graphs (UGs)

1 2 3

• vertices: V = {1, 2, 3}
• cliques: C1 = {1, 2} and C2 = {2, 3}
• separator: S = {2}
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Semantic of the representation

X1 ⊥⊥ X3|X2

1 2 3

p(x1, x2, x3) = p(x1, x2) p(x3|x2)
= p(x1|x2) p(x2, x3)

p(xV ) = p(xC1)p(xC2 |xS)
= p(xC2)p(xC1 |xS)
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Directed acyclic graphs (DAGs)

1 2 3

Any node, v say, is conditional independent of its non-descendants
given its immediate parents, pa(v) say. So, for example,
{3} ⊥⊥ {1}|{2}

Here, the factorization involves the “families” (xv ; xpa(v))

p(xV ) =
∏

v∈V
p(xv |xpa(v))
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The meaning of arrows

• Directed arrows between variables embody the idea of a
“non-symmetrical relationship” between nodes.

• This is a pure artifact.

• Indeed, many DAGs can represent the same conditional
independence property

13



Equivalent DAGs

1 2 3

1 2 3

1 2 3

The three DAGs all represent the same single property X1 ⊥⊥ X3|X2,
and are all equally valid for this purpose.
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Causal DAGs

1 2 3

• A totally different interpretation of this graph is in terms of a
causal DAG

• Here, we say that X2 is (in some sense) a “common cause” of
both X1 and X3, which are otherwise causally unrelated.

• Under this causal interpretation, DAGs in previous slide are no
longer interchangeable.
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Linking statistics to biology



Preliminaries: convert pathways into graphical models

Figure 1: From biological knowledge to statistical models
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Pathways conversion

• Not trivial, as annotation posits all sorts of complications, e.g.,
different types of relations, loops, compounds, . . . (Djordjilovic
et al., 2015)

• However, it is always possible to convert pathways into DAGs.

• This preliminary conversion can be conveniently performed by
the R package graphite (Sales et al., 2012, 2018)
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Doing and Seeing

Answers to most biological questions can be associated to the results
two kinds of activities on a graphical model, i.e. Doing and Seeing

• Doing involves applying a disturbance to a system, typically an
external intervention

• Seeing involves passive observation of a system in its natural
state.

(Spirtes et al, 2000; Pearl, 2009, Dawid, 2009, among others)
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Doing



Gene silencing

• Employed for studying gene function, and for the development
of therapeutics for diseases such as cancer, infectious diseases
and neurodegenerative disorders

• Experiments are expensive and time consuming and the design
of silencing experiments, optimal with respect to specific
targeting, might require complex adaptive procedures
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What we can do

• Simulating potential effects of silencing without physically
performing the experiment (Djordjilovic et al., 2020)

Pipeline

Step 1. Retrieval of DAG and estimation of the statistical model

Step 2. Statistical silencing, aka, intervention analysis
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Step 1: retrieval of DAG

• Available data: Drosophila melanogaster, 12 genes
participating in the WNT pathway. Interest is silencing the
naked cuticle gene (nkd)

dally por

fz nkd

dco daam

psn sgg rho1

arm rok

pont
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Refinement

• DAGs obtained by simple pathway conversion do not always
capture observed statistically significant associations.

• For example, latent (not observed) factors might induce
associations not depicted in the pathway.

True relation Observed association

1

2

3 1 3
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Step 1: guided structure learning

• We estimate the graph, guided by a topological ordering of the
variables retrieved from the pathway DAG (Djordjilovic et al.,
2017).
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Step 1: guided structure learning with K2-type algorithms

1 2 34 567

K2 adds incrementally parents to nodes by maximizing a criterion.

Node Potential parents
1 ∅
7 1
2 1, 7
4 1, 7, 2
. . . . . .
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Example: Drosophila melanogaster

Pathway DAG Refined

dally por

fz nkd

dco daam

psn sgg rho1

arm rok

pont

psnnkd dally

por pont daam

fz arm rok rho1

dco

sgg
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Step 2: silencing

• Silencing effect of v on u

δu = E(Xu || Xv = α+ 1)− E(Xu || Xv = α)

• Coupled with a bootstrap strategy to account for uncertainty
related to estimation of both the graphical structure and the
causal effect.

• Coupled with shrinkage to tackle low sample sizes.
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Biological validation

Experiment • Expression of nkd is artificially inhibited

Data • 12 measured gene expression levels

• 1 biological pathway, WNT (KEGG database)

• 14 knock-down and 14 control samples

Expected results Predictions obtained via intervention calculus
expected to be coherent with observed mean values
after silencing
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Success of predictions

• : success • : failure

dally por

fz nkd

dco daam

psn sgg rho1

arm rok

pont

psnnkd dally

por pont daam

fz arm rok rho1

dco

sgg

Pathway DAG Refined
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Seeing



Searching for the source of difference

• In biological networks, diseases can be modelled as
perturbations that affect certain targets, which, once perturbed,
propagate the perturbation through network connections.

• In practice, we often collect and compare observations from
healthy individuals and observations from patients after the
disease related perturbation has already taken place.

• On the basis of this comparison, it is of interest to identify the
site of original perturbation, i.e., the source of difference, and
distinguish it from the elements of the network that were
affected through the process of network propagation.
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Definition of the source set (Salviato et al., 2019)

• (1): healthy; (2) diseased

• Source set: the smallest set D ⊆ V such that

1. L(1)(XD) 6= L(2)(XD)
2. L(1)(XV \D |XD) = L(2)(XV \D |XD)

• Intuitively: D can be seen as the minimal subset of variables
explaining the difference between the two conditions. Variables
outside of D are either irrelevant or redundant.
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What we can do

• Estimate DG ⊇ D.
• For more details, please follow Elisa Salviato talk: SourceSet: a

graphical model approach to identify primary genes in
perturbed biological pathways

Pipeline

Step 1. Retrieval of DAG and conversion to UG

Step 2. Decomposition of the statistical model and estimation of
the source set
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Step 1: retrieval of DAG and conversion to UG

An undirected perspective is in this context more convenient:

• treats all variables on equal footing
• it is not influenced by loops, feedbacks, etc. . .
• technically, it “enlarges” the model
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Step 2: Decomposition of model
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Step 2: Multiple factorizations

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

p(xV ) =
∏
{C}

p(xC | xpa(C))
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Step 2: source set

• For each factorization:
• test for each clique C

H0 : L(1)(XC | Xpa(C)) = L(2)(XC | Xpa(C))

• collect all cliques for which H0 is rejected
• The source set is the intersection of such sets

SOURCE
SET
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Biological validation: STAT3 silencing

Experiment • High-Grade Glioma

• Expression of STAT3 is artificially inhibited

• The exact source of perturbation is known

Data • 11 knock-down and 11 control samples

• 19 292 measured gene expression levels

• 17 biological pathways (KEGG database) contain
STAT3 gene

Expected results STAT3 gene is expected to be included in the
source set
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STAT3 results

• STAT3 is in the source set of 16 out of 17 pathways;
• In 4 out of 16 pathways, it is the only element of the source set.
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And beyond



Heterogeneous graphical models
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Bussoli, I. (2020). Heterogeneous Graphical Models with Applications to Omics
Data. PhD Thesis. University of Padova, Italy
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Structure learning
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Hue Nguyen, K. and Chiogna, M. (2020). Structure learning of undirected
graphical models for count data. Submitted
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Graphical meta analysis

Massa, M.S. and Chiogna, M. (2013). Effectiveness of combinations of Gaussian
graphical models for model building. Journal of Statistical Computation and
Simulation
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Software

topologyGSA graphite learn2count
SourceSet clipper Mosclip
simPATHy
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Thanks for connecting!
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